Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

rac-5-Chloromethyl-3-(3-chloro-2methylphenyl)-2,2-diphenyloxazolidine

Chuan-Ming Yu,^a* Xiao-Ping Dai,^a Zhen-Yuan Xu^b and Guo-Wu Rao^a

^aCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and ^bCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: ycm@zjut.edu.cn

Received 25 April 2007; accepted 8 May 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.131; data-to-parameter ratio = 18.6.

In the title compound, $C_{23}H_{21}Cl_2NO$, the five-membered oxazolidine ring has a half-boat conformation, with a dihedral angle of 37.4 (2)° between the C₃O and C₂N planes.

Related literature

For related literature, see: Agami & Couty (2004).

Experimental

Crystal data

C ₂₃ H ₂₁ Cl ₂ NO	V = 4024.5 (2) Å ³
$M_r = 398.31$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 25.3638 (9) Å	$\mu = 0.34 \text{ mm}^{-1}$
b = 7.1591 (2) Å	T = 298 (1) K
c = 22.1688 (7) Å	$0.53 \times 0.48 \times 0.39 \text{ mm}$
$\beta = 91.2630 \ (10)^{\circ}$	

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.834, T_{\rm max} = 0.878$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.131$ S = 1.064564 reflections 18483 measured reflections 4564 independent reflections 3844 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.021$

245 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.70 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2004); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors thank the National Basic Research Programme of China (973 Programme, grant No. 2003CB 114400) and the National Natural Science Foundation of China (grant Nos. 20476098 and 20676123) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2169).

References

Agami, C. & Couty, F. (2004). Eur. J. Org. Chem. 4, 677-685.

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o2935 [doi:10.1107/S1600536807022738]

rac-5-Chloromethyl-3-(3-chloro-2-methylphenyl)-2,2-diphenyloxazolidine

C.-M. Yu, X.-P. Dai, Z.-Y. Xu and G.-W. Rao

Comment

5-Chloromethyl-3-(3-chloro-2-methyl-phenyl)-2,2-diphenyl-oxazolidine, (I), was widely used as ligand for metal-catalyzed asymmetric synthesis (Agami *et al.*, 2004). It was obtained from the reaction of 2-chloromethyl-oxirane and benzhy-drylidene-(3-chloro-2-methyl- phenyl)-amine, as colorless crystals suitable for X-ray crystallographic analysis.

The molecular structure of (I) is built up from four rings, three of which are six-membered and one five-membered (Fig. 1). Atoms C1, C2, C3 and O1 are coplanar, the largest deviation being 0.0046 (10) Å for O1. Atom N1 deviates from the C1—C3/O1 plane by -0.5602 (23) Å. So the five membered oxazolidine ring has an half-boat conformation. The dihedral angles between the C1—C3/O1 plane and the C1/C3/N1 and C17—C22 planes are 37.42 (15)° and 89.86 (7)°, respectively. The dihedral angles between the C1—C3/O1 plane and the C5—C10 and C11—C16 planes are 69.24 (7)° and 26.39 (7)°, respectively. The molecule is chiral at C2 but as the space group is centrosymmetric, the unit cell contains the racemate (*R*,*S*).

Experimental

A mixture of 2-chloromethyl-oxirane (0.28 g, 3 mmol), benzhydrylidene-(3-chloro-2-methyl-phenyl)-amine (0.61 g, 2 mmol), and Yb(OTf)₃ (0.06 g, 5 mol%) was stirred at 40°C for 4 h. After completion of conversion as indicated by TLC, the reaction mixture was purified by silica gel column chromatography with petroleum ether-ethyl acetate (10:1) as eluent to afford the white solid (0.72 g, 91%). A solution of the compound in ethanol was concentrated gradually at room temperature to afford colourless chunks (m.p. 379–380 K).

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.97 Å (methylene), 0.96 Å (CH₃) and 0.98 Å (methine) with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(CH_3)$.

Figures

Fig. 1. The structure of (I), shown with 30% probability displacement ellipsoids.

rac-5-Chloromethyl-3-(3-chloro-2-methylphenyl)-2,2-diphenyloxazolidine

Crystal data	
C ₂₃ H ₂₁ Cl ₂ NO	$F_{000} = 1664$
$M_r = 398.31$	$D_{\rm x} = 1.315 {\rm ~Mg~m^{-3}}$
Monoclinic, $C2/c$	Melting point: 380 K
Hall symbol: -C 2yc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 25.3638 (9) Å	Cell parameters from 14749 reflections
b = 7.1591 (2) Å	$\theta = 3.1 - 27.5^{\circ}$
c = 22.1688 (7) Å	$\mu = 0.34 \text{ mm}^{-1}$
$\beta = 91.2630 \ (10)^{\circ}$	T = 298 (1) K
V = 4024.5 (2) Å ³	Chunk, colourless
Z = 8	$0.53 \times 0.48 \times 0.39 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer	4564 independent reflections
Radiation source: fine-focus sealed tube	3844 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
Detector resolution: 10.00 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 298(1) K	$\theta_{\min} = 3.1^{\circ}$
ω scans	$h = -32 \rightarrow 32$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -8 \rightarrow 9$
$T_{\min} = 0.834, T_{\max} = 0.878$	<i>l</i> = −28→28
18483 measured reflections	

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.044$
$wR(F^2) = 0.131$
<i>S</i> = 1.06
4564 reflections
245 parameters
Primary atom site location: structure- methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0769P)^2 + 1.6308P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.046$ $\Delta\rho_{max} = 0.70 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.27 \text{ e } \text{Å}^{-3}$

invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Cl1 -0.023418 (19) 0.76049 (8) 0.46113 (2) 0.06416 (17) Cl2 0.06416 (2) 0.14708 (7) 0.14014 (2) 0.06114 (16) O1 0.12341 (4) 0.69666 (16) 0.40447 (6) 0.0463 (3) N1 0.10091 (5) 0.42695 (18) 0.35117 (5) 0.0360 (3) C1 0.14307 (6) 0.5132 (2) 0.38770 (7) 0.0368 (3) C2 0.05299 (6) 0.4908 (2) 0.38171 (8) 0.0445 (4) H2A 0.0454 0.4120 0.4160 0.053* C3 0.06683 (7) 0.6917 (3) 0.40219 (9) 0.0506 (4) H3 0.0534 0.7428 (3) 0.46360 (9) 0.6067 (5) H4A 0.0627 0.8611 0.4762 0.073* C4 0.04747 (8) 0.4728 (3) 0.4927 0.073* C5 0.15366 (6) 0.3955 (2) 0.44474 (7) 0.395 (3) C6 0.17638 (8) 0.4769 (3) 0.49598 (8) 0.0566 (5) H4B 0.0533 0.4971 <td< th=""><th></th><th>x</th><th>У</th><th>Z</th><th>$U_{\rm iso}*/U_{\rm eq}$</th></td<>		x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Cl2 0.06416 (2) 0.14708 (7) 0.14014 (2) 0.06141 (16) O1 0.12341 (4) 0.69666 (16) 0.40447 (6) 0.0463 (3) N1 0.10091 (5) 0.42695 (18) 0.35117 (5) 0.0360 (3) C1 0.14307 (6) 0.5132 (2) 0.38770 (7) 0.0368 (3) C2 0.05299 (6) 0.4908 (2) 0.38171 (8) 0.0445 (4) H2A 0.0454 0.4120 0.4160 0.053* H2B 0.0227 0.4905 0.3542 0.0536 (4) H3 0.06683 (7) 0.6917 (3) 0.40219 (9) 0.0506 (4) H3 0.0534 0.7815 0.3722 0.061* C4 0.04747 (8) 0.7428 (3) 0.46360 (9) 0.0607 (5) H4A 0.0627 0.8611 0.4762 0.073* C5 0.15366 (6) 0.3955 (2) 0.44474 (7) 0.395 (3) C6 0.17638 (8) 0.4769 (3) 0.49598 (8) 0.0564 (5) H6 0.1819 0.6053 0.4971	C11	-0.023418 (19)	0.76049 (8)	0.46113 (2)	0.06416 (17)
O10.12341 (4)0.69666 (16)0.40447 (6)0.0463 (3)N10.10091 (5)0.42695 (18)0.35117 (5)0.0360 (3)C10.14307 (6)0.5132 (2)0.38770 (7)0.0368 (3)C20.05299 (6)0.4908 (2)0.38171 (8)0.0445 (4)H2A0.04540.41200.41600.053*H2B0.02270.49050.35420.053*C30.06683 (7)0.6917 (3)0.40219 (9)0.0506 (4)H30.05340.78150.37220.061*C40.04747 (8)0.7428 (3)0.46360 (9)0.0607 (5)H4B0.06270.86110.47620.073*C50.15366 (6)0.3955 (2)0.44474 (7)0.0395 (3)C60.17638 (8)0.4769 (3)0.49598 (8)0.0564 (5)H60.18190.60530.49710.068*C70.19084 (9)0.3684 (4)0.54548 (8)0.0705 (6)H70.20600.42470.57950.085*C80.18294 (9)0.1788 (4)0.54477 (9)0.0669 (6)H80.19290.10640.57800.080*C90.16013 (9)0.0967 (3)0.49440 (9)0.0627 (5)H90.1544-0.03150.49370.075*C100.14575 (7)0.2039 (3)0.44476 (8)0.0498 (4)H100.13060.14670.41100.606*C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.22422 (7) </td <td>Cl2</td> <td>0.06416 (2)</td> <td>0.14708 (7)</td> <td>0.14014 (2)</td> <td>0.06141 (16)</td>	Cl2	0.06416 (2)	0.14708 (7)	0.14014 (2)	0.06141 (16)
N10.10091 (5)0.42695 (18)0.35117 (5)0.0360 (3)C10.14307 (6)0.5132 (2)0.38770 (7)0.0368 (3)C20.05299 (6)0.4908 (2)0.38171 (8)0.0445 (4)H2A0.04540.41200.41600.053*H2B0.02270.49050.35420.053*C30.06683 (7)0.6917 (3)0.40219 (9)0.0506 (4)H30.05340.78150.37220.061*C40.04747 (8)0.7428 (3)0.46360 (9)0.0607 (5)H4A0.06270.86110.47620.073*C50.15366 (6)0.3955 (2)0.44474 (7)0.0395 (3)C60.17638 (8)0.4769 (3)0.49598 (8)0.0564 (5)H60.18190.60530.49710.068*C70.19084 (9)0.3684 (4)0.54548 (8)0.0705 (6)H70.20600.42470.57950.085*C80.18294 (9)0.1788 (4)0.54470 (9)0.0627 (5)H80.19290.10640.57800.080*C90.16013 (9)0.0967 (3)0.49370.075*C100.14575 (7)0.2039 (3)0.44476 (8)0.0498 (4)H100.13060.14670.41100.606*C110.1952 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.2242 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.060*C130.27367 (8)0.712	01	0.12341 (4)	0.69666 (16)	0.40447 (6)	0.0463 (3)
C10.14307 (6)0.5132 (2)0.38770 (7)0.0368 (3)C20.05299 (6)0.4908 (2)0.38171 (8)0.0445 (4)H2A0.04540.41200.41600.053*H2B0.02270.49050.35420.053*C30.06683 (7)0.6917 (3)0.40219 (9)0.0506 (4)H30.05340.78150.37220.061*C40.04747 (8)0.7428 (3)0.46360 (9)0.0607 (5)H4A0.06270.86110.47620.073*C50.15366 (6)0.3955 (2)0.44474 (7)0.0395 (3)C60.17638 (8)0.4769 (3)0.49598 (8)0.0564 (5)H60.18190.60530.49710.068*C70.19084 (9)0.3684 (4)0.54548 (8)0.0705 (6)H70.20600.42470.57950.085*C80.18294 (9)0.1788 (4)0.5477 (9)0.0669 (6)H80.19290.10640.57800.080*C90.16013 (9)0.0967 (3)0.4940 (9)0.0627 (5)H90.1544-0.03150.49370.075*C100.14575 (7)0.2039 (3)0.44476 (8)0.0498 (4)H100.13060.14670.41100.060*C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.22422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.060*C130.27367 (8)0.7123 (3)	N1	0.10091 (5)	0.42695 (18)	0.35117 (5)	0.0360 (3)
C20.05299 (6)0.4908 (2)0.38171 (8)0.0445 (4)H2A0.04540.41200.41600.053*H2B0.02270.49050.35420.053*C30.06683 (7)0.6917 (3)0.40219 (9)0.0506 (4)H30.05340.78150.37220.061*C40.04747 (8)0.7428 (3)0.46360 (9)0.0607 (5)H4A0.06270.86110.47620.073*C50.15366 (6)0.3955 (2)0.44474 (7)0.0395 (3)C60.17638 (8)0.4769 (3)0.49598 (8)0.0564 (5)H60.18190.60530.49710.068*C70.19084 (9)0.3684 (4)0.54548 (8)0.0705 (6)H70.20600.42470.57950.085*C80.18294 (9)0.1788 (4)0.54477 (9)0.0669 (6)H80.19290.10640.57800.089*C90.16013 (9)0.0967 (3)0.49440 (9)0.0227 (5)H90.1544-0.03150.49370.075*C100.14575 (7)0.2039 (3)0.44476 (8)0.4988 (4)H100.13060.14670.41100.060*C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.22422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.606*C130.27367 (8)0.7123 (3)0.33595 (10)0.0606 (5)H130.29310.82200	C1	0.14307 (6)	0.5132 (2)	0.38770 (7)	0.0368 (3)
H2A0.04540.41200.41600.053*H2B0.02270.49050.35420.053*C30.06683 (7)0.6917 (3)0.40219 (9)0.0506 (4)H30.05340.78150.37220.061*C40.04747 (8)0.7428 (3)0.46360 (9)0.0607 (5)H4A0.06270.86110.47620.073*H4B0.05830.64820.49270.073*C50.15366 (6)0.3955 (2)0.44474 (7)0.0395 (3)C60.17638 (8)0.4769 (3)0.49598 (8)0.0564 (5)H60.18190.60530.49710.068*C70.19084 (9)0.3684 (4)0.54548 (8)0.0705 (6)H70.20600.42470.57950.085*C80.18294 (9)0.1788 (4)0.54477 (9)0.0669 (6)H80.19290.10640.57800.080*C90.16013 (9)0.0967 (3)0.49440 (9)0.0627 (5)H90.1544-0.03150.49370.075*C100.14575 (7)0.2039 (3)0.44476 (8)0.0498 (4)H100.13060.14670.41100.600*C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.22422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.600*C130.27367 (8)0.7123 (3)0.33970.073*C140.2939 (7)0.5635 (3)0.30504 (8)	C2	0.05299 (6)	0.4908 (2)	0.38171 (8)	0.0445 (4)
H2B0.02270.49050.35420.053*C30.06683 (7)0.6917 (3)0.40219 (9)0.0506 (4)H30.05340.78150.37220.061*C40.04747 (8)0.7428 (3)0.46360 (9)0.0607 (5)H4A0.06270.86110.47620.073*C50.15366 (6)0.3955 (2)0.44474 (7)0.0395 (3)C60.17638 (8)0.4769 (3)0.49598 (8)0.0564 (5)H60.18190.60530.49710.068*C70.19084 (9)0.3684 (4)0.54548 (8)0.0705 (6)H70.20600.42470.57950.085*C80.18294 (9)0.1788 (4)0.54477 (9)0.0669 (6)H80.19290.10640.57800.080*C90.16013 (9)0.0967 (3)0.49440 (9)0.0627 (5)H90.1544-0.03150.49370.075*C100.14575 (7)0.2039 (3)0.44476 (8)0.0498 (4)H100.13060.14670.41100.060*C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.22422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.60*C130.27367 (8)0.7123 (3)0.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.0578 (5)	H2A	0.0454	0.4120	0.4160	0.053*
C30.06683 (7)0.6917 (3)0.40219 (9)0.0506 (4)H30.05340.78150.37220.061*C40.04747 (8)0.7428 (3)0.46360 (9)0.0607 (5)H4A0.06270.86110.47620.073*H4B0.05830.64820.49270.073*C50.15366 (6)0.3955 (2)0.44474 (7)0.0395 (3)C60.17638 (8)0.4769 (3)0.49598 (8)0.0564 (5)H60.18190.60530.49710.068*C70.19084 (9)0.3684 (4)0.54548 (8)0.0705 (6)H70.20600.42470.57950.085*C80.18294 (9)0.1788 (4)0.54477 (9)0.0669 (6)H80.19290.10640.57800.080*C90.16013 (9)0.0967 (3)0.49440 (9)0.0627 (5)H90.1544-0.03150.49370.075*C100.14575 (7)0.2039 (3)0.44476 (8)0.0498 (4)H100.13060.14670.41100.060*C110.1952 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.2422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.060*C130.27367 (8)0.7123 (3)0.33595 (10)0.6066 (5)H130.29310.82200.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.578 (5)	H2B	0.0227	0.4905	0.3542	0.053*
H30.05340.78150.37220.061*C40.04747 (8)0.7428 (3)0.46360 (9)0.0607 (5)H4A0.06270.86110.47620.073*H4B0.05830.64820.49270.073*C50.15366 (6)0.3955 (2)0.44474 (7)0.0395 (3)C60.17638 (8)0.4769 (3)0.49598 (8)0.0564 (5)H60.18190.60530.49710.068*C70.19084 (9)0.3684 (4)0.54548 (8)0.0705 (6)H70.20600.42470.57950.085*C80.18294 (9)0.1788 (4)0.54477 (9)0.0669 (6)H80.19290.10640.57800.080*C90.16013 (9)0.0967 (3)0.49440 (9)0.0627 (5)H90.1544-0.03150.49370.075*C100.14575 (7)0.2039 (3)0.44476 (8)0.0498 (4)H100.13060.14670.41100.060*C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.22422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.060*C130.27367 (8)0.7123 (3)0.33595 (10)0.0606 (5)H130.29310.82200.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.578 (5)	C3	0.06683 (7)	0.6917 (3)	0.40219 (9)	0.0506 (4)
C40.04747 (8)0.7428 (3)0.46360 (9)0.0607 (5)H4A0.06270.86110.47620.073*H4B0.05830.64820.49270.073*C50.15366 (6)0.3955 (2)0.44474 (7)0.0395 (3)C60.17638 (8)0.4769 (3)0.49598 (8)0.0564 (5)H60.18190.60530.49710.068*C70.19084 (9)0.3684 (4)0.54548 (8)0.0705 (6)H70.20600.42470.57950.085*C80.18294 (9)0.1788 (4)0.54477 (9)0.0669 (6)H80.19290.10640.57800.080*C90.16013 (9)0.0967 (3)0.49440 (9)0.0627 (5)H90.1544-0.03150.49370.075*C100.14575 (7)0.2039 (3)0.44476 (8)0.0498 (4)H100.13060.14670.41100.060*C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.22422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.060*C130.27367 (8)0.7123 (3)0.33595 (10)0.0606 (5)H130.29310.82200.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.0578 (5)	Н3	0.0534	0.7815	0.3722	0.061*
H4A0.06270.86110.47620.073*H4B0.05830.64820.49270.073*C50.15366 (6)0.3955 (2)0.44474 (7)0.0395 (3)C60.17638 (8)0.4769 (3)0.49598 (8)0.0564 (5)H60.18190.60530.49710.068*C70.19084 (9)0.3684 (4)0.54548 (8)0.0705 (6)H70.20600.42470.57950.085*C80.18294 (9)0.1788 (4)0.54477 (9)0.0669 (6)H80.19290.10640.57800.080*C90.16013 (9)0.0967 (3)0.49440 (9)0.0627 (5)H90.1544-0.03150.49370.075*C100.14575 (7)0.2039 (3)0.44476 (8)0.0498 (4)H100.13060.14670.41100.060*C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.22422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.060*C130.27367 (8)0.7123 (3)0.33595 (10)0.0606 (5)H130.29310.82200.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.0578 (5)	C4	0.04747 (8)	0.7428 (3)	0.46360 (9)	0.0607 (5)
H4B0.05830.64820.49270.073*C50.15366 (6)0.3955 (2)0.44474 (7)0.0395 (3)C60.17638 (8)0.4769 (3)0.49598 (8)0.0564 (5)H60.18190.60530.49710.068*C70.19084 (9)0.3684 (4)0.54548 (8)0.0705 (6)H70.20600.42470.57950.085*C80.18294 (9)0.1788 (4)0.54477 (9)0.0669 (6)H80.19290.10640.57800.080*C90.16013 (9)0.0967 (3)0.49440 (9)0.0627 (5)H90.1544-0.03150.49370.075*C100.14575 (7)0.2039 (3)0.44476 (8)0.0498 (4)H100.13060.14670.41100.060*C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.22422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.060*C130.27367 (8)0.7123 (3)0.33595 (10)0.0606 (5)H130.29310.82200.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.578 (5)	H4A	0.0627	0.8611	0.4762	0.073*
C50.15366 (6)0.3955 (2)0.44474 (7)0.0395 (3)C60.17638 (8)0.4769 (3)0.49598 (8)0.0564 (5)H60.18190.60530.49710.068*C70.19084 (9)0.3684 (4)0.54548 (8)0.0705 (6)H70.20600.42470.57950.085*C80.18294 (9)0.1788 (4)0.54477 (9)0.0669 (6)H80.19290.10640.57800.080*C90.16013 (9)0.0967 (3)0.49440 (9)0.0627 (5)H90.1544-0.03150.49370.075*C100.14575 (7)0.2039 (3)0.44476 (8)0.0498 (4)H100.13060.14670.41100.060*C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.21060.80180.38250.060*C130.27367 (8)0.7123 (3)0.33595 (10)0.0606 (5)H130.29310.82200.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.578 (5)	H4B	0.0583	0.6482	0.4927	0.073*
C60.17638 (8)0.4769 (3)0.49598 (8)0.0564 (5)H60.18190.60530.49710.068*C70.19084 (9)0.3684 (4)0.54548 (8)0.0705 (6)H70.20600.42470.57950.085*C80.18294 (9)0.1788 (4)0.54477 (9)0.0669 (6)H80.19290.10640.57800.080*C90.16013 (9)0.0967 (3)0.49440 (9)0.0627 (5)H90.1544-0.03150.49370.075*C100.14575 (7)0.2039 (3)0.44476 (8)0.0498 (4)H100.13060.14670.41100.060*C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.22422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.060*C130.27367 (8)0.7123 (3)0.33595 (10)0.0606 (5)H130.29310.82200.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.0578 (5)	C5	0.15366 (6)	0.3955 (2)	0.44474 (7)	0.0395 (3)
H60.18190.60530.49710.068*C70.19084 (9)0.3684 (4)0.54548 (8)0.0705 (6)H70.20600.42470.57950.085*C80.18294 (9)0.1788 (4)0.54477 (9)0.0669 (6)H80.19290.10640.57800.080*C90.16013 (9)0.0967 (3)0.49440 (9)0.0627 (5)H90.1544-0.03150.49370.075*C100.14575 (7)0.2039 (3)0.44476 (8)0.0498 (4)H100.13060.14670.41100.060*C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.22422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.060*C130.27367 (8)0.7123 (3)0.33595 (10)0.0606 (5)H130.29310.82200.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.0578 (5)	C6	0.17638 (8)	0.4769 (3)	0.49598 (8)	0.0564 (5)
C70.19084 (9)0.3684 (4)0.54548 (8)0.0705 (6)H70.20600.42470.57950.085*C80.18294 (9)0.1788 (4)0.54477 (9)0.0669 (6)H80.19290.10640.57800.080*C90.16013 (9)0.0967 (3)0.49440 (9)0.0627 (5)H90.1544-0.03150.49370.075*C100.14575 (7)0.2039 (3)0.44476 (8)0.0498 (4)H100.13060.14670.41100.060*C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.22422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.060*C130.27367 (8)0.7123 (3)0.33595 (10)0.06066 (5)H130.29310.82200.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.0578 (5)	H6	0.1819	0.6053	0.4971	0.068*
H70.20600.42470.57950.085*C80.18294 (9)0.1788 (4)0.54477 (9)0.0669 (6)H80.19290.10640.57800.080*C90.16013 (9)0.0967 (3)0.49440 (9)0.0627 (5)H90.1544-0.03150.49370.075*C100.14575 (7)0.2039 (3)0.44476 (8)0.0498 (4)H100.13060.14670.41100.060*C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.22422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.060*C130.27367 (8)0.7123 (3)0.33595 (10)0.0606 (5)H130.29310.82200.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.0578 (5)	C7	0.19084 (9)	0.3684 (4)	0.54548 (8)	0.0705 (6)
C80.18294 (9)0.1788 (4)0.54477 (9)0.0669 (6)H80.19290.10640.57800.080*C90.16013 (9)0.0967 (3)0.49440 (9)0.0627 (5)H90.1544-0.03150.49370.075*C100.14575 (7)0.2039 (3)0.44476 (8)0.0498 (4)H100.13060.14670.41100.060*C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.22422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.060*C130.27367 (8)0.7123 (3)0.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.0578 (5)	H7	0.2060	0.4247	0.5795	0.085*
H80.19290.10640.57800.080*C90.16013 (9)0.0967 (3)0.49440 (9)0.0627 (5)H90.1544-0.03150.49370.075*C100.14575 (7)0.2039 (3)0.44476 (8)0.0498 (4)H100.13060.14670.41100.060*C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.22422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.060*C130.27367 (8)0.7123 (3)0.33595 (10)0.06066 (5)H130.29310.82200.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.0578 (5)	C8	0.18294 (9)	0.1788 (4)	0.54477 (9)	0.0669 (6)
C90.16013 (9)0.0967 (3)0.49440 (9)0.0627 (5)H90.1544-0.03150.49370.075*C100.14575 (7)0.2039 (3)0.44476 (8)0.0498 (4)H100.13060.14670.41100.060*C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.22422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.060*C130.27367 (8)0.7123 (3)0.33595 (10)0.06066 (5)H130.29310.82200.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.0578 (5)	H8	0.1929	0.1064	0.5780	0.080*
H90.1544-0.03150.49370.075*C100.14575 (7)0.2039 (3)0.44476 (8)0.0498 (4)H100.13060.14670.41100.060*C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.22422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.060*C130.27367 (8)0.7123 (3)0.33595 (10)0.0606 (5)H130.29310.82200.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.0578 (5)	C9	0.16013 (9)	0.0967 (3)	0.49440 (9)	0.0627 (5)
C100.14575 (7)0.2039 (3)0.44476 (8)0.0498 (4)H100.13060.14670.41100.060*C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.22422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.060*C130.27367 (8)0.7123 (3)0.33595 (10)0.0606 (5)H130.29310.82200.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.0578 (5)	Н9	0.1544	-0.0315	0.4937	0.075*
H100.13060.14670.41100.060*C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.22422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.060*C130.27367 (8)0.7123 (3)0.33595 (10)0.06066 (5)H130.29310.82200.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.0578 (5)	C10	0.14575 (7)	0.2039 (3)	0.44476 (8)	0.0498 (4)
C110.19526 (6)0.5360 (2)0.35628 (6)0.0382 (3)C120.22422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.060*C130.27367 (8)0.7123 (3)0.33595 (10)0.0606 (5)H130.29310.82200.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.0578 (5)	H10	0.1306	0.1467	0.4110	0.060*
C120.22422 (7)0.7004 (3)0.36172 (8)0.0502 (4)H120.21060.80180.38250.060*C130.27367 (8)0.7123 (3)0.33595 (10)0.0606 (5)H130.29310.82200.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.0578 (5)	C11	0.19526 (6)	0.5360 (2)	0.35628 (6)	0.0382 (3)
H120.21060.80180.38250.060*C130.27367 (8)0.7123 (3)0.33595 (10)0.0606 (5)H130.29310.82200.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.0578 (5)	C12	0.22422 (7)	0.7004 (3)	0.36172 (8)	0.0502 (4)
C130.27367 (8)0.7123 (3)0.33595 (10)0.0606 (5)H130.29310.82200.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.0578 (5)	H12	0.2106	0.8018	0.3825	0.060*
H130.29310.82200.33970.073*C140.29399 (7)0.5635 (3)0.30504 (8)0.0578 (5)	C13	0.27367 (8)	0.7123 (3)	0.33595 (10)	0.0606 (5)
C14 0.29399 (7) 0.5635 (3) 0.30504 (8) 0.0578 (5)	H13	0.2931	0.8220	0.3397	0.073*
	C14	0.29399 (7)	0.5635 (3)	0.30504 (8)	0.0578 (5)
H14 0.3270 0.5728 0.2878 0.069*	H14	0.3270	0.5728	0.2878	0.069*
C15 0.26552 (7) 0.4008 (3) 0.29954 (8) 0.0549 (5)	C15	0.26552 (7)	0.4008 (3)	0.29954 (8)	0.0549 (5)
H15 0.2792 0.3001 0.2785 0.066*	H15	0.2792	0.3001	0.2785	0.066*

supplementary materials

C16	0.21637 (6)	0.3868 (3)	0.32534 (7)	0.0463 (4)
H16	0.1974	0.2760	0.3218	0.056*
C17	0.09890 (5)	0.4577 (2)	0.28690 (7)	0.0355 (3)
C18	0.11064 (7)	0.6283 (2)	0.26038 (8)	0.0474 (4)
H18	0.1202	0.7296	0.2845	0.057*
C19	0.10818 (8)	0.6480 (3)	0.19804 (9)	0.0551 (4)
H19	0.1164	0.7623	0.1806	0.066*
C20	0.09367 (7)	0.4997 (3)	0.16203 (8)	0.0502 (4)
H20	0.0921	0.5127	0.1203	0.060*
C21	0.08146 (6)	0.3310 (2)	0.18858 (7)	0.0415 (3)
C22	0.08338 (5)	0.3039 (2)	0.25121 (7)	0.0361 (3)
C23	0.07082 (8)	0.1201 (2)	0.28008 (8)	0.0482 (4)
H23A	0.0624	0.0298	0.2493	0.072*
H23B	0.0412	0.1349	0.3059	0.072*
H23C	0.1008	0.0778	0.3035	0.072*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0490 (3)	0.0713 (3)	0.0729 (3)	0.0029 (2)	0.0195 (2)	-0.0129 (2)
Cl2	0.0718 (3)	0.0654 (3)	0.0466 (2)	0.0037 (2)	-0.0071 (2)	-0.0167 (2)
01	0.0391 (6)	0.0378 (6)	0.0623 (7)	-0.0018 (5)	0.0060 (5)	-0.0145 (5)
N1	0.0320 (6)	0.0386 (6)	0.0375 (6)	-0.0023 (5)	0.0014 (5)	-0.0036 (5)
C1	0.0355 (7)	0.0349 (7)	0.0401 (7)	-0.0033 (6)	0.0023 (6)	-0.0081 (6)
C2	0.0351 (7)	0.0496 (9)	0.0490 (8)	-0.0031 (7)	0.0048 (6)	-0.0080 (7)
C3	0.0422 (9)	0.0505 (9)	0.0593 (10)	0.0019 (7)	0.0070 (7)	-0.0073 (8)
C4	0.0533 (10)	0.0649 (12)	0.0645 (12)	-0.0011 (9)	0.0119 (9)	-0.0174 (9)
C5	0.0349 (7)	0.0487 (8)	0.0351 (7)	-0.0025 (6)	0.0041 (6)	-0.0052 (6)
C6	0.0652 (11)	0.0596 (11)	0.0442 (9)	-0.0058 (9)	-0.0023 (8)	-0.0139 (8)
C7	0.0781 (14)	0.0949 (18)	0.0380 (9)	0.0000 (12)	-0.0105 (9)	-0.0129 (10)
C8	0.0703 (13)	0.0866 (16)	0.0436 (9)	0.0039 (12)	-0.0036 (9)	0.0120 (10)
C9	0.0686 (12)	0.0598 (11)	0.0593 (11)	-0.0067 (10)	-0.0079 (9)	0.0123 (9)
C10	0.0547 (10)	0.0495 (9)	0.0448 (8)	-0.0080 (8)	-0.0079 (7)	-0.0001 (7)
C11	0.0340 (7)	0.0454 (8)	0.0352 (7)	-0.0034 (6)	0.0002 (6)	-0.0011 (6)
C12	0.0478 (9)	0.0481 (9)	0.0550 (9)	-0.0091 (7)	0.0060 (7)	-0.0017 (8)
C13	0.0475 (10)	0.0675 (12)	0.0669 (12)	-0.0187 (9)	0.0048 (8)	0.0095 (10)
C14	0.0382 (8)	0.0880 (14)	0.0474 (9)	-0.0055 (9)	0.0064 (7)	0.0101 (9)
C15	0.0404 (8)	0.0797 (13)	0.0446 (9)	0.0077 (9)	0.0035 (7)	-0.0082 (9)
C16	0.0371 (8)	0.0550 (10)	0.0468 (8)	-0.0015 (7)	0.0011 (6)	-0.0085 (7)
C17	0.0308 (7)	0.0353 (7)	0.0404 (7)	0.0023 (5)	-0.0011 (5)	-0.0014 (6)
C18	0.0525 (9)	0.0360 (8)	0.0535 (9)	-0.0028 (7)	-0.0060 (7)	0.0026 (7)
C19	0.0583 (10)	0.0487 (10)	0.0579 (10)	-0.0038 (8)	-0.0057 (8)	0.0175 (8)
C20	0.0462 (9)	0.0618 (11)	0.0423 (8)	0.0039 (8)	-0.0026 (7)	0.0094 (8)
C21	0.0359 (7)	0.0477 (9)	0.0408 (7)	0.0057 (6)	-0.0025 (6)	-0.0054 (6)
C22	0.0312 (7)	0.0360 (7)	0.0409 (7)	0.0042 (6)	0.0012 (5)	-0.0026 (6)
C23	0.0595 (10)	0.0372 (8)	0.0479 (8)	-0.0074 (7)	0.0002 (7)	-0.0047 (7)

Geometric parameters (Å, °)

Cl1—C4	1.802 (2)	C10—H10	0.9300
Cl2—C21	1.7491 (17)	C11—C16	1.384 (2)
O1—C3	1.435 (2)	C11—C12	1.391 (2)
01—C1	1.4558 (18)	C12—C13	1.392 (3)
N1-C17	1.4414 (18)	C12—H12	0.9300
N1—C1	1.4639 (18)	C13—C14	1.373 (3)
N1—C2	1.4768 (19)	C13—H13	0.9300
C1—C11	1.518 (2)	C14—C15	1.374 (3)
C1—C5	1.539 (2)	C14—H14	0.9300
C2—C3	1.546 (2)	C15—C16	1.387 (2)
C2—H2A	0.9700	C15—H15	0.9300
C2—H2B	0.9700	С16—Н16	0.9300
C3—C4	1.503 (3)	C17—C18	1.391 (2)
С3—Н3	0.9800	C17—C22	1.407 (2)
C4—H4A	0.9700	C18—C19	1.389 (3)
C4—H4B	0.9700	C18—H18	0.9300
C5—C10	1.386 (2)	C19—C20	1.374 (3)
C5—C6	1.390 (2)	C19—H19	0.9300
C6—C7	1.387 (3)	C20—C21	1.382 (3)
С6—Н6	0.9300	C20—H20	0.9300
С7—С8	1.373 (4)	C21—C22	1.402 (2)
С7—Н7	0.9300	C22—C23	1.501 (2)
C8—C9	1.378 (3)	C23—H23A	0.9600
С8—Н8	0.9300	C23—H23B	0.9600
C9—C10	1.384 (3)	C23—H23C	0.9600
С9—Н9	0.9300		
C3—O1—C1	108.45 (12)	C9—C10—H10	119.6
C17—N1—C1	119.47 (12)	C5-C10-H10	119.6
C17—N1—C2	113.23 (12)	C16—C11—C12	119.11 (15)
C1—N1—C2	102.38 (11)	C16—C11—C1	119.70 (14)
O1—C1—N1	105.77 (12)	C12—C11—C1	121.02 (14)
O1—C1—C11	109.11 (12)	C11—C12—C13	119.69 (18)
N1-C1-C11	115.17 (12)	C11—C12—H12	120.2
01—C1—C5	109.81 (12)	C13—C12—H12	120.2
N1-C1-C5	109.61 (12)	C14—C13—C12	120.57 (18)
C11—C1—C5	107.32 (12)	C14—C13—H13	119.7
N1—C2—C3	103.81 (12)	C12—C13—H13	119.7
N1—C2—H2A	111.0	C13—C14—C15	119.96 (17)
С3—С2—Н2А	111.0	C13—C14—H14	120.0
N1—C2—H2B	111.0	C15-C14-H14	120.0
С3—С2—Н2В	111.0	C14—C15—C16	120.00 (18)
H2A—C2—H2B	109.0	C14—C15—H15	120.0
O1—C3—C4	107.96 (15)	C16—C15—H15	120.0
O1—C3—C2	104.71 (13)	C11—C16—C15	120.67 (17)
C4—C3—C2	114.58 (16)	C11—C16—H16	119.7
O1—C3—H3	109.8	C15—C16—H16	119.7

supplementary materials

109.8	C18—C17—C22	120.61 (14)
109.8	C18—C17—N1	123.27 (14)
109.59 (14)	C22—C17—N1	116.11 (13)
109.8	C19—C18—C17	120.32 (16)
109.8	C19—C18—H18	119.8
109.8	C17—C18—H18	119.8
109.8	C20—C19—C18	120.32 (16)
108.2	С20—С19—Н19	119.8
118.17 (16)	С18—С19—Н19	119.8
121.31 (14)	C19—C20—C21	119.19 (15)
120.22 (16)	С19—С20—Н20	120.4
120.6 (2)	C21—C20—H20	120.4
119.7	C20—C21—C22	122.67 (15)
119.7	C20—C21—Cl2	116.88 (12)
120.58 (18)	C22—C21—Cl2	120.45 (13)
119.7	C21—C22—C17	116.89 (14)
119.7	C21—C22—C23	122.73 (14)
119.31 (19)	C17—C22—C23	120.37 (14)
120.3	С22—С23—Н23А	109.5
120.3	С22—С23—Н23В	109.5
120.4 (2)	H23A—C23—H23B	109.5
119.8	С22—С23—Н23С	109.5
119.8	H23A—C23—H23C	109.5
120.88 (17)	H23B—C23—H23C	109.5
	109.8 109.8 109.59 (14) 109.8 109.8 109.8 109.8 108.2 118.17 (16) 121.31 (14) 120.22 (16) 120.6 (2) 119.7 119.7 119.7 119.7 119.7 119.31 (19) 120.3 120.3 120.4 (2) 119.8 119.8 119.8	109.8 $C18-C17-C22$ 109.8 $C18-C17-N1$ $109.59 (14)$ $C22-C17-N1$ 109.8 $C19-C18-C17$ 109.8 $C19-C18-H18$ 109.8 $C17-C18-H18$ 109.8 $C20-C19-C18$ 108.2 $C20-C19-H19$ $118.17 (16)$ $C18-C19-H19$ $121.31 (14)$ $C19-C20-C21$ $120.6 (2)$ $C21-C20-H20$ 119.7 $C20-C21-C22$ 119.7 $C20-C21-C12$ 119.7 $C21-C22-C17$ 119.7 $C21-C22-C17$ 119.7 $C21-C22-C23$ $119.31 (19)$ $C17-C22-C23$ 120.3 $C22-C23-H23A$ $120.4 (2)$ $H23A-C23-H23C$ 119.8 $H23A-C23-H23C$ 119.8 $H23A-C23-H23C$ $120.88 (17)$ $H23B-C23-H23C$

